Портландцемент (ПЦ)

Производство портландцемента осуществляется преимущественно мокрым или сухим способами в зависимости от приготовления сырьевой смеси.

Сырье для производства портландцемента должно содержать 75…78% СaCO3 и 22…25% глинистого вещества. В качестве сырья для производства портландцемента применяют известняки с высоким содержанием углекислого кальция ( мел, мергели, плотный известняк) и глинистые породы (глины, глинистые сланцы), содержащие SiO2, Al2O3 и Fe2O3. В среднем на 1 т цемента расходуется около 1,5 т минерального сырья; примерное соотношение между карбонатным и глинистым составляющими сырьевой смеси 3:1 ( то есть берется около 75% известняка и 25% глины).

Горные породы, удовлетворяющие указанным требованиям, в природе встречаются редко. Поэтому для производства портландцемента кроме известняков и глин применяют так называемые корректирующие добавки, содержащие значительное количество одного из оксидов, недостающих в сырьевой смеси.

Так, недостаточное количество SiO2 компенсируется введением высококремнеземистых веществ ( опоки, диатомита, трепела). Увеличить содержание оксидов железа(Fe2O3) можно путем введения колчеданных огарков или руды. Повышение содержания глинозема Аl2О3 достигается добавлением высокоглиноземистых глин. Введенные в сырьевую смесь добавки корректируют химический состав сырьевой массы, регулируют температуру спекания смеси и кристаллизацию минералов клинкера.

Читай также что такое портландцемент

Для производства портландцемента все шире используют побочные продукты промышленности. Весьма ценным сырьем являются доменные шлаки, содержащие необходимые для получения клинкера составные части (СаО, Si02, Аl2Оз, Fе2Oз). Нефелиновый шлам, получающийся при производстве глинозема, содержит 25 — 30% Si02 и 50 — 55% СаО; достаточно к нему добавить 15 — 20% известняка, чтобы получить сырьевую смесь. Использование нефелинового шлама повышает производительность печей примерно на 20% и снижает расход топлива на 20 — 25%.

Основной и наиболее эффективный вид топлива — природный газ, отличающийся высокой теплотворной способностью. Сокращается применение мазута и твердого топлива, приготовляемого в специальных установках для сушки и помола угля (антрацита, каменного угля). Теплотворная способность твердого топлива ниже, чем газообразного; углевоздушные смеси подвержены взрывам; зольность углей 10 — 20%, и зола, попадая в обжигаемую сырьевую смесь, искажает расчетный минеральный состав клинкера. Стоимость топлива составляет до 25% себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии.

Подготовка сырья.

Производство портландцемента — сложный технологический и энергоемкий процесс, включающий:

1) добычу в карьере и доставку на завод сырьевых материалов, известняка и глины;

2) приготовление сырьевой смеси;

3) обжиг сырьевой смеси до спекания — получение клинкера;

4) помол клинкера с добавкой гипса — получение портландцемента;

5) магазинирование готового продукта.

Обеспечению заданного состава и качества клинкера подчинены все технологические операции. Приготовление сырьевой смеси состоит в тонком измельчании и смешении взятых в установленном соотношении компонентов, что обеспечивает полноту прохождения химических реакций между ними и однородность клинкера. Приготовление сырьевой смеси осуществляется сухим, мокрым и комбинированным способами.

При мокром способе сырьевые материалы измельчают и смешивают в присутствии воды и смесь в виде жидкого шлама обжигают во вращающихся печах; при сухом способе материалы измельчают, смешивают и обжигают в сухом виде. В последнее время все шире начинает применяться комбинированный способ приготовления сырьевой смеси, по которому сырьевую смесь подготовляют по мокрому способу, затем шлам обезвоживают и из него приготовляют гранулы, которые обжигают по сухому способу.

Каждый из способов имеет свои положительные и отрицательные стороны. В водной среде облегчается измельчение материалов и быстро достигается однородность смеси, но расход топлива на обжиг смеси в 1,5…2 раза больше, чем при сухом способе. Развитие сухого способа длительное время ограничивалось вследствие низкого качества получаемого клинкера. Однако успехи в технике помола и гомогенизации сухих смесей обеспечили качество портландцемента.

В настоящее время получает всемирное развитие сухой способ производства цемента с печами, оборудованными циклонными теплообменниками и реакторами-декарбонизаторами (рисунок-1). Производительность технологической линии с печью 4,5×80 м, циклонными теплообменниками и реактором-декарбонизатором составляет 3000 т клинкера в сутки.

При этом способе производства цемента расход топлива снижается на 30…40% по сравнению с мокрым, а металлоемкость печных агрегатов — в 2,5…3 раза. Намечается также освоение технологии и строительство цементных заводов с реактором-декарбонизатором с печами 5× ×100 м производительностью 5000 т клинкера в сутки.

◊ Сухой способ

Производство цемента по сухому способу экономичнее, чем по мокрому: отсутствует процесс образования шлама; можно совместить отдельные звенья технологической схемы в одном агрегате — мельницы самоизмельчения «Аэрофол», усреднительные склады, мельницы помола сырьевых материалов с подсушкой и др.

При сухом способе (рисунок-1) поступающие на завод сырьевые материалы в виде мергеля, известняка и глины подвергают дроблению в дробилках типа С-776 до зерен крупностью 2,5 мм (глинистый материал дробят в агрегатах с одновременной его сушкой). Приготовленный дробленый сырьевой материал ленточными транспортерами подают на склад сырья, где сырьевые компоненты усредняют (с помощью усреднительных машин) до установленного норматива по химическому составу и подают далее в бункера мельниц.

Рисунок-1. Технологическая схема производства цемента по сухому способу:

Из последних сырьевые компоненты вместе с добавками через дозаторы по массе поступают в приемные устройства помольных агрегатов, где их измельчают до требуемой тонины, подсушивают за счет тепла отходящих газов из вращающихся печей и подвергают сепарации.
Измельченный в мельнице материал выгружают потоком газов через циклоны-разгружатели с помощью мельничного вентилятора. Далее мука поступает в коррекционные силосы, где она гомогенизируется и перегружается в расходные силосы.

Из силосов сырьевую смесь подают пневмоподъемниками в загрузочное устройство, оснащенное дозаторами по массе, и далее в циклонные теплообменники вращающейся печи. В теплообменниках сырьевая смесь нагревается встречными горячими газами вращающейся печи до температуры 750…800°С и частично декарбонизуется, после чего поступает в печь на обжиг.

Обжиг клинкера при сухом способе производства осуществляется во вращающихся печах с циклонными теплообменниками, состоящими обычно из четырех последовательно соединенных циклонов, через которые направляются отходящие из печи газы; навстречу газам сверху вниз через циклоны поступает сухая измельченная сырьевая шихта; за 25…30 с она нагревается до 750…800°С и декарбонизуется на 30…40%. Такая современная печь имеет производительность 3000 т/с при удельном расходе тепла 3,2…3,4 МДж/кг клинкера.

Техническим прогрессом является введение в систему циклонных теплообменников дополнительной диссоциационной ступени реактора-декарбонизатора (рис. 2), в котором сжигается до 60% топлива, предназначенного для обжига клинкера. В реакторе-декарбонизаторе происходит на 85…90% разложение карбоната кальция, а остальные 10…15% процесса диссоциации приходятся на долю вращающейся печи.

Рисунок-2. Новое в технологии цементного производства:

Установка декарбонизатора позволяет повысить съем клинкера с 1 м3 внутреннего объема печи в 2,5…3 раза, повысить производительность печей до 6000… 10000 т/сут, снизить удельный расход теплоты до 3,0…3,1 МДж/кг клинкера. Размеры установки невелики, и она может использоваться не только при строительстве новых заводов, но и при модернизации действующих печей с циклонными теплообменниками.

Таким образом, наиболее теплонапряженная стадия процесса обжига цементного клинкера — декарбонизация — выносится за пределы печи, в которой происходит только спекание клинкера, и она оказывается термически ненагруженной. Это дает возможность существенно повысить производительность печей при том же удельном расходе тепла на обжиг. Клинкер охлаждается до 60…80°С в колосниковом холодильнике и далее подается на измельчение в сепараторную мельницу.

Цемент транспортируют в силосы, из которых он идет на отгрузку навалом или через упаковочную машину в таре потребителю.
Известны вращающиеся печи полусухого способа производства, в них печь соединена с конвейерной решеткой, на которой через слой гранулированной сырьевой шихты дважды просасываются горячие печные газы; в результате в загрузочный конец печи поступает подогретая и частично декарбонизированная сырьевая шихта.

Расход тепла в этой печи размерами 4×60 м — около 3,5 МДж при производительности 42 т/ч. При комбинированном способе сырьевые материалы, подготовленные по мокрому способу, и шлам, имеющий влажность около 40%, обезвоживаются на фильтрах до влажности 16…18%. Из полученного «сухаря» приготовляют гранулы и обжигают их по схеме сухого способа.

Состав портландцемента

Портландцемент получают спеканием сырьевой смеси, в состав которой входят глина (22-25 %) и известняк (75-78 %). Добыча известняка, залегающего на глубинах до 0,7-10 м, ведется открытым способом. Для изготовления портландцемента используется слой известняка желтовато-зеленоватого цвета.

Спеченная при высоких температурах гранулированная сырьевая смесь называется «клинкер». Именно его состав и характеристики определяют важные свойства цемента: прочность цементного камня и скорость ее нарастания, долговечность и стойкость к сложным эксплуатационным условиям отвердевших растворов и смесей, изготовленных на базе портландцемента.

Технические характеристики портландцемента

Оценка качества портландцемента осуществляется по следующим характеристикам:

  • Плотность. Эта величина определяется минералогическим составом материала. В рыхлом состоянии она находится в пределах 0,9-1,3 т/м3, в уплотненном – 1,5-2 т/м3.
  • Период схватывания. Эта техническая характеристика является важным свойством портландцемента. Она зависит от минералогического состава сырья, тонкости помола, водоцементного соотношения, температуры окружающей среды. Схватывание должно начаться не ранее чем через 45 минут, а закончиться – не позже, чем через 12 часов после затворения портландцемента. По нормативам портландцемент, предназначенный для создания бетонных покрытий дорог, может схватываться только через 2 часа после его затворения.
  • Тонкость помола. Эта величина, равная суммарной поверхности зерен в единице массы цемента, существенно влияет на технические характеристики материала, в частности, на скорость его твердения. У обычного портландцемента тонкость помола равна 2500-3000 см2/г, быстротвердеющего – 4000-6000 см2/г.
  • Равномерность изменения объема во время твердения цементной лепешки. Это одна из главных технических характеристик портландцемента. Неравномерное схватывание характерно для вяжущего, в составе которого присутствует слишком большое количество свободной извести или оксида магния. Равномерность изменения объема измеряется на четырех лепешках, которые изготавливаются из цементного теста нормальной густоты. Испытания проводят способом кипячения. Цемент считается прошедшим испытания, если на лицевой стороне всех лепешек отсутствуют: сетка мелких трещин или крупные радиальные трещины, доходящие до края.
  • Водоцементное соотношение (водопотребность). Этот термин означает количество воды, необходимое для изготовления продукта требуемой пластичности. Для портландцемента водоцементное соотношение составляет примерно 25 %. При необходимости его снижения в состав сырьевой смеси вводят пластификаторы.
  • Водоотделение. Этот процесс происходит при твердении строительного раствора или смеси из-за опускания частиц вяжущего и заполнителей под действием силы тяжести. Вода может выступать на поверхности бетонного элемента, между слоями укладываемой смеси или раствора, вокруг частиц заполнителя или арматурных стержней. Наличие таких тонких водных пленок внутри бетонного элемента значительно снижает его прочность и долговечность.
  • Морозостойкость. Это свойство характеризует способность отвердевшего цементно-песчаного слоя или бетонной конструкции, изготовленных на базе портландцемента, выдерживать циклы замерзания/оттаивания без потери рабочих характеристик.
  • Коррозионная стойкость. Ее обычно разделяют на химическую и физическую коррозионную стойкость. Химическая коррозионная стойкость зависит от минералогического состава, а именно, от способности компонентов выдерживать воздействие химически агрессивных сред. Физическую коррозионную стойкость улучшают снижением пористости бетона, уменьшением радиуса пор и их обработкой гидрорфобизирующими составами.
  • Тепловыделение. Это свойство характеризует величину тепла, выделяемого в процессе гидратации цемента. Портландцемент, слишком активно выделяющий большое количество тепла, нельзя использовать при строительстве массивных сооружений из-за большой разницы в температурах на поверхности и внутри бетонного элемента. Для регулирования тепловыделения цемента применяют специальные активные добавки.

Разновидности портландцемента

Все виды портландцемента делятся на бездобавочные и добавочные. Бездобавочные ПЦ в качестве добавок содержат только гипс. Такие цементы используются для строительства надземных, подземных, подводных конструкций, изготовления железобетонных изделий, не контактирующих при эксплуатации с агрессивными средами. Активные минеральные добавки изменяют технические характеристики портландцемента в нужном направлении. С их помощью повышают водонепроницаемость, коррозионную стойкость и другие полезные свойства готовых продуктов, изготовленных на базе цемента.

В зависимости от присутствующих в составе добавок различают следующие разновидности портландцемента:

  • Быстротвердеющий (БПЦ). Для этого цемента характерен быстрый набор прочности в первые дни после заливки смеси или раствора. В его составе преобладают трехкальциевый силикат и трехкальциевый алюминат. Он имеет очень высокую тонкость помола, поэтому быстро впитывает влагу из воздуха. При неправильном хранении такой цемент очень быстро теряет товарные характеристики. Быстротвердеющие портландцементы используются при производстве ЖБИ с высокой отпускной прочностью. Коррозионная стойкость быстротвердеющих цементов пониженная.
  • Пластифицированный. Получают введением поверхностно-активных добавок. Применение этой разновидности портландцементов позволяет снизить водоцементное соотношение, повысить прочность и морозостойкость получаемых растворов и бетонов после твердения.
  • Гидрофобный. При производстве гидрофобного портландцемента в состав клинкера добавляют гидрофобные ПАВ, которые образуют на зернах цемента водоотталкивающие пленки. Обычно в качества ПАВ востребованы продукты нефтепереработки. При хранении даже во влажных условиях такой цемент не портится, не слеживается и не комкуется. Строительные смеси и растворы на базе гидрофобного цемента отличаются хорошей пластичностью, а после твердения – водонепроницаемостью и морозостойкостью.
  • Сульфатостойкий. Цемент изготавливают из клинкера, который имеет в составе пониженное содержание трехкальциевых силиката и алюмината. Такой портландцемент повышает стойкость бетона к коррозии при эксплуатации строительной конструкции в контакте с сульфатсодержащими средами.
  • Белый. Цемент получают с использованием белых коалиновых глин, мела, чистых известняков. На основе белого ПЦ изготавливают цветные цементы путем добавления красящих пигментов.
  • Шлакопортландцемент. Изготавливают совместным помолом портландцементного клинкера, гипса и доменного гранулированного шлака.
  • Пуццолановый. Получают смешиванием портландцементного клинкера, активной миндобавки, гипса. Активные минеральные добавки, входящие в состав этого цемента, – вулканические туфы, пемзы, пеплы, трепел, золы тепловых электростанций. Это вяжущее активно используется при строительстве гидротехнических сооружений, подземных объектов.

Классы и марки прочности портландцементов

В соответствии с ГОСТом 31108-2016 основная характеристика портландцемента – прочность – определяется классом. Ранее это свойство характеризовала марка. Наиболее популярные портландцементы:

  • В 32,5 (М400). Вид цемента, востребованный практически во всех областях частного и массового строительства, для изготовления ЖБИ, устройства дорожек, площадок, отмосток.
  • В42,5 (М500). Портландцемент, имеющий прекрасные прочностные характеристики, применяется в ремонтно-строительных работах на объектах ответственного назначения, при восстановлении строительных конструкций после аварий, проведении дорожно-ремонтных работ.
  • В52,5 (М600). Портландцемент, используемый при строительстве особо ответственных объектов.

Сульфатостойкий портландцемент

Обычно его выделяют в отдельную группу, давайте посмотрим, что такое он из себя представляет и чем отличается от других разновидностей. Сульфатостойкий портландцемент имеет в своем составе целый ряд веществ, которые делают его устойчивым к сульфатам, а также другим схожим веществам, эта его особенность ценится высоко.

Поэтому, именно сульфатостойкий портландцемент применяют для создания свай и фундаментов на болотистых и кислых почвах. Если смотреть по другим показателям, тут наиболее распространен портландцемент марки М500. Технические характеристики этой марки подходят для большей части требований современного строительства.

Применение

Для начала стоит уточнить, что бездобавочный портландцемент м400 может применяться повсеместно. При этом, в отличие от цемента, он позволяет ускорять строительство. Об этом говорят отзывы строителей. В зависимости от марки особенности использования отличаются.

Если для фундамента используется простой портландцемент с пуццоланой, то должна применяться жидкая резина для гидроизоляции. Это позволит избежать проблем в дальнейшем. Вообще пуццолановый портландцемент наиболее восприимчив к воздействиям.

Давайте рассмотрим, пример практического использования материала. Как стандарт мальцовский портландцемент возьмем белого цвета. Тут стоит заметить, что количество песка и наполнителя (щебня, шлака) зависит от конкретного рецепта бетона. Тут мы только упомянем, сколько воды требуется для портландцемента.

В отличие от других типов цементов, тут не требуется большого объема воды, в зависимости от необходимой густоты раствора на 10 кг портландцемента добавляют 1,4-2,5 литра воды. Этого вполне достаточно. При использовании портландцемента стоит помнить, что он затвердевает достаточно быстро, поэтому следует использовать его как можно быстрее. Так вы избежите неоправданных потерь раствора.

Особенности состава

Основой материала является клинкер, его измельчают. Перед приготовлением его обжигают. Также добавляют гипс, его в составе не слишком много, достаточно количества, которое обеспечивает количество оксида серы в пределах 1,5-3,5%. В некоторых случаях используются минеральные добавки. Это позволяет добиться определенных показателей.

В составе можно найти большое количество различных оксидов. Это позволяет сделать данный материал довольно пластичным в использовании. Он одновременно обладает высоким уровнем прочности после застывания, при этом быстро застывает, а также удобен в приготовлении раствора.

Тут стоит выделить сульфатостойкий портландцемент, который несколько отличается по составу, что позволяет ему быть более устойчивым к целому ряду воздействий. Помимо этого, в составе порядка 95-97% минералов. Больше всего тут следующих веществ:

  • белит;
  • алит;
  • алюминат;
  • алюмоферит.

Большое количество в составе белита и алита не только определяют внешний вид материала, но и являются основными источниками клинкера. Так как сочетание разных минералов в составе может быть разным, то портландцемент белый может различаться по плотности и удельному весу.

ГОСТ

Портландцемент может регламентироваться сразу несколькими нормативными документами. Частично они пересекаются, поэтому на упаковках можно увидеть упоминания одного или сразу двух ГОСТов.

  • ГОСТ 10178-85.
  • ГОСТ Р 31108-2003.

Тут же указано подразделение материала на несколько различных марок. Но, имеется небольшое отличие, в более свежем документе имеется цемент 900 марки, которого нет в ГОСТе 1985 года. Хотя этот нюанс больше интересен проектировщикам, а также инженерам, которые занимаются обоснованием строительства военных объектов.

Производство

Для производства обычно применяются карбонатные горные породы. Чаще всего, используют:

  • Глинозем;
  • Кремнезем;
  • Известняк;
  • Мел.

В некоторых случаях могут использовать мергели, но в этом случае контролируют содержание оксида серы и при необходимости добавляют в состав серу. К такому материалу относят мальцовский портландцемент. Именно он произведен по такой технологии. В состав портландцемента могут входить различные минерализованные добавки, такой материал часто производят на площадках ЮУГПК.

При производстве производят измельчение компонентов, с последующим их смешиванием. Далее полученное сырье обжигают в печах, при этом выдерживают температуру 1300-1400°C, этого вполне достаточно для достижения оптимального обжига.

После обжига получают клинкер, его измельчают, добавляют гипс. В итоге получается готовый продукт, если планируется получить цемент со шлаком, то добавляют шлак в нужной пропорции.

Мокрый способ производства портландцемента

◊ Мокрый способ

По мокрому способу (рис. 3) сырьевые материалы, доставляемые из карьера на завод в кусках, подвергают предварительному измельчению (до крупности не более 5 мм). Твердые породы дробят в дробилках, а более мягкие (глина, мел) измельчают перемешиванием с водой в глиноболтушках. Болтушка представляет собой круглый железобетонный резервуар диаметром 5…10 м и высотой 2,5…3,5 м, футерованный чугунными плитами.

Рисунок-3. Технологическая схема производства портландцемента по мокрому способу:

1 — подача известняка из карьера; 2 — дробилка для известняка;3 — подача глины из карьера;4 — подача воды; 5 — бассейн для размешивания глины;6 — сырьевая мельница; 7—шлам-бассейны;8 — вращающаяся печь;9 — холодильник;10 — подача топлива; 11 — склад гипса;12 — элеватор для подачи гипса из дробилки в бункер;13 — склад клинкера;14 — шаровая мельница;15 — силосы для цемента;16— упаковка цемента

Вокруг вертикальной оси в болтушке вращается крестовина с подвешенными в ней на цепях стальными граблями для измельчения кусков глины. Полученный в глиноболтушке шлам с влажностью около 45% выпускается через отверстие с сеткой и переначинается в трубную (шаровую) мельницу, куда непрерывно подается дробленый известняк.

Рисунок-4. Шаровая многокамерная мельница:

Трубная мельница (рис. 4) представляет собой стальной цилиндр длиной до 15 м, диаметром до 3,2 м, вращающийся на полых цапфах, через которые мельницу с одной стороны загружают, а с другой стороны — разгружают. Внутри мельница разделена перегородками с отверстиями на три камеры. В первой и второй камерах имеются стальные или чугунные шары, а в третьей — небольшие цилиндрики. Через полую цапфу шлам поступает в первую камеру трубной мельницы.

При вращении мельницы шары под действием центробежной силы и силы трения прижимаются к стенкам, поднимаются на некоторую высоту и падают, разбивая и растирая зерна материала. Трубные мельницы являются непрерывнодействующим оборудованием. Тонкоизмельченный материал в виде сметанообразной массы — шлама — подается насосом в шлам-бассейны,представляющие собой железобетонные или стальные резервуары цилиндрической формы.

В них окончательно корректируется химический состав шлама и создается некоторый запас для бесперебойной работы печей. Из бассейнов шлам поступает в баки, а затем равномерно подается во вращающуюся печь для обжига. Вращающаяся печь (рис. 5) представляет собой длинный цилиндр из листовой стали, облицованный внутри огнеупорным материалом.

Рисунок-5. Вращающаяся печь

Длина печей 150…185…230 м, диаметр 4…5…7 м. Барабан печи установлен с наклоном 3,5…4° и вращается вокруг своей оси с частотой 0,5…1,4 мин -1 .Вращающиеся печи работают по принципу противотока.Шлам загружается с верхней стороны печи и передвигается к нижнему концу.Топливо в виде пыли каменного угля или газа вдувается вместе с воздухом с противоположного конца печи и сгорает, создавая температуру 1500°С.

Дымовые газы удаляются со стороны поднятого конца печи.Шлам перемещаясь вдоль барабана, соприкасается с горячими газами идущими ему на встречу и постепенно нагревается. Образованию портландцементного клинкера предшествует ряд физико-химических процессов,протекающих в определенных температурных границах-технологических зонах печного агрегата -вращающейся печи.

При мокром способе производства цемента по ходу движения обжигаемого материала условно выделяют следующие зоны : I-испарения, II-подогрева и дегидратации, III-декарбонизации, IV-экзотермических реакций, V-спекания, VI-охлаждения. Рассмотрим эти процессы начиная с поступления сырьевой смеси с печь, то есть по направлению с верхнего ее конца (холодного) к нижнему ( горячему).

В зоне испарения при постепенном повышении температуры с 70 до 200 °С испаряется влага а сырьевая смесь подсушивается. Подсушенный материал комкуется .Перемещаясь комья распадается на более мелкие гранулы. В печах сухого способа зона испарения отсутствует.

В зоне подогрева при постепенном нагревании сырья с 200 до 700 °С выгорают органические примеси, из глиняных минералов удаляется кристаллохимическая вода ( при 450 …500°С) и образуется безводный каолинит Аl2Оз· Si02.Зоны испарения и подогрева при мокром способе занимают 50…60% длины печи .

В зоне декарбонизации температура обжигаемого материала повышается с 700 до 1100°С.Происходит диссоциация карбонатов кальция и магния с образованием свободных (СаО, MgO).Одновременно продолжается распад глинистых минералов на оксиды SiO2,Al2O3,Fe2O3, которые вступают в химическое взаимодействие с CaO. В результате этих реакций происходящих в твердом образуются минералы 3CaO·Al2O3,CaO·Al2O3 и частично 2CaO·SiO2.

В зоне экзотермических реакций при температуре 1200…1300°С завершается процесс твердофазового спекания материала, образуются 3CaO·Al2O3, 4CaO·Al2O3·Fe2O3, и белит, резко уменьшается количество свободной извести, но достаточное для насыщения двухкальциевого силиката до трехкальциевого.

В зоне спекания при температурах 1300… 1450… 1300°С происходит частичное плавление материала (20…30% обжигаемой смеси). В расплав переходят все клинкерные минералы, кроме 2CaO·SiO2, все легкоплавкие примеси сырьевой смеси. Алит кристаллизуется из расплава в результате растворения в нем оксида кальция и двухкальциевого силиката.

Это соединение плохо растворимо в расплаве, вследствие чего выделяется в виде мелких кристаллов, которые в дальнейшем растут. Понижение температуры с 1450 до 1300°С вызывает кристаллизацию из расплава 3СаО·Аl2О3, 4СаО·Аl2О3·Fе2О3 и MgO (в виде периклаза), которая заканчивается в зоне охлаждения.

В зоне охлаждения температура клинкера понижается с 1300 до 1000°С, здесь полностью формируются его структура и состав, включающий алит C3S, белит C2S, С3А, C4AF, MgO (периклаз), стекловидную фазу и второстепенные составляющие.
Границы зон во вращающейся печи достаточно условны и не являются стабильными. Меняя режим работы печи, можно смещать зоны и регулировать тем самым процесс обжига.

Образовавшийся таким образом раскаленный клинкер поступает в холодильник, где резко охлаждается движущимся навстречу ему холодным воздухом. Клинкер, выходящий из холодильника вращающихся печей с температурой около 100°С и более, поступает на склад для окончательного охлаждения и вылеживания (магазинирования), где он находится до 15 дней. Если известь содержится в клинкере в свободном виде, то в течение вылеживания она гасится влагой воздуха.

На высокомеханизированных заводах с четко организованным технологическим процессом качество клинкера оказывается настолько высоким, что отпадает необходимость его вылеживания. Помол клинкера совместно с добавками производят в трубных многокамерных мельницах.
Тонкое измельчение клинкера с гипсом и активными минеральными добавками в тонкий порошок производится преимущественно в сепараторных установках, работающих по открытому или замкнутому циклу.

Эффективная работа трубной мельницы обеспечивается охлаждением мельничного пространства путем его аспирации (вентилирования). Благодаря аспирации производительность мельниц растет на 20…25%, уменьшается пылевыделение, улучшаются условия труда. Для интенсификации помола вводят добавку — сульфитно-дрожжевую бражку (СДБ), при этом производительность мельниц увеличивается на 20…30%.

На современных цементных заводах помол портландцемента в открытом цикле проходит по следующей технологической схеме. Клинкер, гипс и активные минеральные добавки со склада подаются в бункера и дозируются тарельчатыми питателями. После измельчения цемент поступает через цапфу мельницы в аспирационную шахту, а из нее в бункер цемента и далее на склад.

Мельничное пространство аспирируется, запыленный воздух частично очищается в аспирационной шахте, а затем в циклонах и электрофильтре, далее собирается шнеком и направляется в расходный бункер цемента. Недостатком помола в открытом цикле является трудность получения цемента с высокой удельной поверхностью (до 400…500 м2/кг).

Мельницы, работающие в замкнутом цикле, дают более однородный по размеру зерен продукт большей удельной поверхности (4000…5000 см2/г); замкнутый цикл помола включает помольный агрегат и центробежный сепаратор, определяющий крупные зерна, возвращаемые на домол в первую камеру, а тонкая фракция домалывается в третьей камере, из которой выгружается готовый цемент. В полностью замкнутом цикле материал проходит через сепаратор дважды.

В последнее время получает распространение короткая трубная мельница, обычно двухкамерная, работающая в замкнутом цикле с сепаратором.
Готовый портландцемент (с температурой 100°С и более) пневматическим транспортом направляется в силосы для охлаждения. После этого его расфасовывают по 50 кг в многослойные бумажные мешки или загружают в специально оборудованный автомобильный, железнодорожный или водный транспорт.

Новый способ производства портландцемента

Новый способ производства портландцемента состоит в том что клинкер обжигают в солевом растворе хлоридов.При этом способе основная реакционная среда в печи (силикатный расплав) заменена солевым расплавом на основе хлорида кальция. В солевом расплаве ускоряется растворение основных клинкерообразующих оксидов (CaO, SiO2, Al2O3, Fе2О3) и образование минералов (алита, белита и др.) завершается при 1100…1150°С вместо обычных 1400…1500°С, что существенно снижает энергоемкость получения цементного клинкера. Полученный клинкер наряду с алитом содержит минерал, названный алинитом.

Алинит — это высокоосновный Аl-Сl-силикат кальция, содержащий около 2,5% хлорида. Клинкер, синтезированный в солевом расплаве, размалывается в 3…4 раза легче, чем обычный. Это позволяет снизить электрозатраты на помол и увеличить производительность цементных мельниц. При этом сокращается число помольных агрегатов.

Алинитовый цемент быстрее гидратируется в начальные сроки. Технология нового цемента осваивается на цементных заводах. Сейчас глубоко изучаются коррозионная стойкость бетона на этом цементе и поведение стальной арматуры в бетоне с учетом наличия в нем хлора. Все это позволит определить рациональные области применения алинитового цемента.

Общий расход энергии на 1 т цемента 325…550 МДж, причем минимальные энергетические затраты достигаются при сухом способе с применением декарбонизатора: на помол клинкера с добавками затрачивается 125… 180 МДж.

*****

РЕКОМЕНДУЕМ выполнить перепост статьи в соцсетях!
*****

Глубокое понимание свойств портландцемента и требований, предъявляемых к нему, а также проектирование и выбор клинкера определенного минералогического состава возможны только при знании процессов, протекающих при ‘формировании прочного цементного камня из цементного порошка.

Цемент, затворенный водой и тщательно перемешанный, образует пластичное, липкое цементное тесто. Это тесто .постепенно загустевает и переходит в камнеподобное состояние. Превращение порошка цемента в цементный камень с постепенным переходом через стадию образования пластичного цементного теста определяется физико-химическими процессами, происходящими между цементом и водой.

Клинкерные минералы, входящие в состав цементного зерна, при соприкосновении последнего с водой начинают растворяться и химически взаимодействовать с ней — гидратироваться, образуя гидраты

Так как цемент затворяется ограниченным количеством воды, то в .результате растворения клинкерных минералов раствор в цементном тесте быстро становится насыщенным. Дальнейшая их гидратация вызывает пересыщение раствора, так как растворимость гидратов значительно меньше растворимости клинкерных минералов. Пересыщенные .растворы в обычных условиях существовать не могут, из них начинает выпадать растворенное вещество в виде мельчайших частиц, в данном случае гидратов ктинкерных минералов. Эти ‘частицы обладают клеящей способностью, которая передается цементному тесту. В результате оно хорошо прилипает к различным телам и склеивает их.

Вследствие поглощения воды клинкерными минералами на гидратацию содержание свободной воды в цементном тесте уменьшается, что повышает концентрацию гидратов и вызывает их слипание. При этом цементное тесто начинает загустевать (упрочняться), теряя клеящую способность и пластичные свойства. Период, в течение которого цементное тесто начинает приобретать некоторую прочность, называют временем схватывания; в зависимости от величины этой прочности различают начало и конец схватывания цементного теста. В конце схватывания оно теряет пластичность.

Дальнейшее приобретение прочности цементным камнем определяется более глубокими процессами уплотнения гидратиро- ванных масс клинкерных минералов и частичным переходом последних в кристаллическое состояние. Образующиеся при этом кристаллические сростки пронизывают цементный камень во всех направлениях и как бы армируют его, обеспечивая высокую прочность.

Скорость твердения цемента, таким образом, будет зависеть от скорости растворения клинкерных минералов, накопления гидратов, последующего их уплотнения и кристаллизации.

Скорость растворения минералов различна. Быстрее всех растворяется трехкальциевый алюминат; затем следует четы- рехкальциевый алюмоферрит и трехкальциевый силикат и значительно медленнее других растворяется двухкальциевый силикат. Если учесть, что клинкер в основном составляют силикаты кальция, тогда как алюминаты содержатся в сравнительно небольшом количестве, то становится очевидным, что цементы с высоким содержанием трехкальциевого силиката твердеют значительно быстрее цементов с высоким содержанием двухкаль- циевого силиката.

Скорость растворения цементного порошка и всех последующих процессов твердения цемента зависит также от тонкости помола цемента. Чем мельче зерна, тем большей оказывается их поверхность в одном и том же количестве цемента, в результате улучшаются условия взаимодействия цемента с водой. По

Для определения активности цемента сначала приготовляют цементный раствор определенной консистенции, затем .из него изготовляют образцы, выдерживают их’28 суток в стандартных условиях и испытывают на прочность.

Цементный раствор приготовляют в соответствии с ГОСТ 310—60 (методы испытания цемента) следующим образом. Отвешивают 500 г цемента и 1500 г песка. Песок для испытания цементов применяется «нормальный» Вольский (ГОСТ 6139—52), характеризующийся определенной крупностью зерен (от 0,5 до 0,85 мм) и высоким содержанием двуокиси кремния (не менее 96%).

Цемент и .песок высыпают в сферическую чашку и тщательно перемешивают лопаточкой в течение 1 мин. Затем в центре сухой смеси делают углубление и вливают в него воду в количестве 40% от веса цемента (водоцементное отношение равно 0,4), т. е. 200 мл. .После того как вода впитается, смесь еще раз перемешивают вручную в течение 1 мин, а затем в стандартной механической мешалке в течение 2,5 мин (20 оборотов чаши).

По окончании перемешивания определяют консистенцию раствора. Для этого пользуются встряхивающим столиком с установленной на нем формой-конусом высотой ’60 мм и диаметром оснований 1100 и 70 мм.

Для определения консистенции раствора форму-конус заполняют растворной смесью в два приема. Первый слой штыкуют 15 раз, второй—10. Излишек раствора срезают ножом и форму-конус поднимают строго вертикально. Полученный конус раствора встряхивают на столике 30 раз и измеряют расплыв конуса по нижнему основанию в двух взаимно перпендикулярных направлениях. Консистенция раствора считается нормальной, если расплыв конуса оказывается равным 105—1110 мм. При меньшем расплыве конуса раствор приготовляют заново с несколько большим количеством воды.

От величины .водоцементного отношения зависит пористость цементного камня. На химическую реакцию цемент поглощает строго определенное количество воды, примерно 15—20% ог своего веса. Вода, введенная в раствор сверх этого количества, испаряется и образует в цементном камне поры, снижающие его прочность. Чем выше В/Ц, тем больше будет пористость цементного камня и ниже его прочность. Однако прочность цементных образцов зависит также от степени их уплотнения. А чем пластичнее смесь, тем легче и лучше она уплотняется при формовании образцов. Продолжительность и усилие уплотнения раствора принимаются во всех случаях строго постоянными (одинаковое число встряхиваний), .поэтому для получения равной степени уплотнения необходимо применять смесь одной и той же консистенции, при’В/Ц близком к 0,40, что и предусматривает стандарт.

Для изготовления образцов применяют металлические разъемные трехгнездные формы. Уплотняют раствор вибрацией на виброплощадке.

При испытаниях цемента необходимо особое внимание обращать на условия твердения. Это требование определяется тем, что на процессы твердения цемента температура и влажность среды оказывают серьезное влияние: с повышением температуры твердение ускоряется; недостаточная влажность так же, как и низкая температура, может привести к замедлению или к полному прекращению твердения. Поэтому для получения сравнимых .результатов независимо от места и времени испытания ,цемента стандарт устанавливает определенные требования в отношении условий твердения цемента.

Отформованные образцы вместе с формой помещают в ванну с гидравлическим затвором при относительной влажности среды около il00% и температуре 20±2°С и хранят в течение 24±2 ч. Затем образцы расформовывают и укладывают в бассейн с водой в горизонтальном положении, раздельно друг от друга. .Воду в бассейне нужно менять через каждые 14 суток.

1По истечении срока хранения образцы вынимают из воды, насухо вытирают ,и не позднее чем через 10 мин подвергают испытанию.

Для определения марки цемента образцы испытывают в возрасте ’28 суток с момента их изготовления, подвергая каждую балочку разрушению изгибающей нагрузкой, а затем каждую из полученных ‘половинок балочек испытывают на сжатие.

По величине предела прочности при изгибе и сжатии образцов в возрасте 28 суток устанавливают марку цемента. При этом пределы прочности при изгибе и сжатии для каждой марки цементов должны быть не ниже, приведенных в I.

ГОСТ 970—61 предусматривает отличные по величине марки цемента. Марка обозначается по пределу прочности при сжатии через 28 суток твердения трамбованных образцов (кубов 70,7Х Х70,7Х70,7 мм), изготовленных из раствора жесткой консистенции с нормальным песком состава 1:3 (по весу). По этому ГОСТ принято пять марок: 300, 400, 500, 600, и 700. Более высокие значения марок объясняются более энергичным уплотнением образцов трамбованием и низким водоцементным отношением в пределах 0,28—0,32 и менее.

Такая величина водоцементного отношения и способ изготовления образцов (трамбованием) по существу не отвечали условиям применения цемента в рабочих бетонных смесях и наиболее распространенному способу их уплотнения (вибрацией). Водоцементное отношение рабочих бетонных смесей всегда превышает нормальную густоту цементного теста, исходя из

условий их удобоукладываемости при виброуплотнении. В заводских условиях производства сборных железобетонных изделий В/Ц обычно равно 0,4—0,5, снижаясь в отдельных случаях до 0,35; бетонная смесь для монолитных конструкций имеет более высокую величину водоцементного отношения, достигающую иногда до 0,7—0,75.

Определение активности цемента в пластичных образцах с водоцементным отношением не менее 0,4 ближе отвечает условиям использования цемента в бетонах. Это значительно упрощает проектирование состава ‘бетона заданной прочности.

Таковы в общих чертах основные причины отказ.а от многолетней методики определения активности цемента на образцах из раствора жесткой консистенции и перехода на испытание в пластических растворах.

Величина отношения активности цемента, полученной в пластичных растворах /?Пласт и жестких растворах Rmec™, в среднем .составляет для портландцементов 0,80, а для пуццолановых портландцементов и шлакопортландцементов 0,70. Так, например, портландцемент марки 500, определенной в жестких рас- створах, покажет марку 400 (500-0,8) по новому методу испытания в пластических растворах.

Сроки схватывания портландцемента

Сроки схватывания портландцемента определяют на тесте нормальной густоты, т. е. определенной консистенции. Нормальная густота цементного теста характеризуется количеством воды (от веса цемента), потребной для получения теста стандартной консистенции.

Нормальную густоту цементного теста определяют при помощи прибора Вика. Он состоит из стержня, вертикально перемещающегося в направляющих и заканчивающегося металлическим цилиндриком (пестик Тетмайера) диаметром 10 мм, длиной 50 мм. Вес стержня с пестиком должен быть равен 300±2 г.

Тщательно перемешанное цементное тесто укладывают в металлическое или эбонитовое кольцо, установленное на стеклянную пластинку.

Кольцо с тестом устанавливают ,в приборе по центру с пестиком и доводят пестик до поверхности теста. .Зятем стержень с закрепленным в нем пестиком освобождают, и он под действием собственного веса начинает погружаться в .цементное тесто. За нормальную густоту цементного теста принимается такая, при которой пестик не доходит до дна кольца на 5—1 мм.

При определении сроков схватывания отвешивают 400 г цемента, затворяют его водой в количестве, соответствующем нормальной густоте, и перемешивают.

‘Сроки схватывания определяют также при помощи прибора Вика, но при этом пестик заменяют иглой диаметром 1,1 мм, длиной 50 мм. Для того чтобы вес подвижной части прибора при замене пестика иглой сохранялся постоянным и равным 300 г, на стержень устанавливает добавочный груз весом 27,5 г. Тщательно перемешанное тесто укладывают в кольцо прибора, как указано в предыдущем опыте. Затем острие иглы доводят до соприкосновения с поверхностью теста, стержень освобождают и игла под весом стержня погружается е тесто.

Началом схватывания цементного теста считается время, прошедшее от начала затворения цемента водой до того момента, когда игла не будет доходить до дна кольца на ;1—2 мм, а концом схватывания считается время от начала затворения цемента до момента, когда игла будет погружаться в тесто не более чем на 1 мм. Портландцемент должен иметь: начало схватывания не ранее 46 мин; конец схватывания не позднее 12 ч.

Равномерность изменения объема портландцемента при твердении

Наличие в портландцементе свободной извести и окиси магния может повлечь образование трещин и искривление цементных образцов, что принято называть неравномерностью изменения объема при твердении. Причиной этого является, как отмечалось, увеличение объема СаО и MgO при их взаимодействии

с водой (гашении) и появление в результате этого внутренних растягивающих напряжений в цементном камне, разрывающих или искривляющих образец.

Применяют два метода испытания цемента на равномерность изменения объема: кипячением и выдерживанием в автоклаве при давлении пара 20 ати. Кипячением испытывают портландцемент с содержанием окиси магния до 5%. Метод испытания в автоклаве применяют, когда содержание окиси магния в клинкере портландцемента превышает 5%. В этом случае установить вредное влияние окиси магния только кипячением не удается, так как она, будучи в клинкере сильно пережженной, при температуре кипячения (100°С) гасится очень медленно. Температура насыщенного пара в автоклаве превышает 200°С, процесс — гашения в этих условиях резко ускоряется.

Испытание кипячением. Из приготовленного указанным выше способом теста нормальной густоты отвешивают шесть навесок по 75 г и помещают каждую навеску в виде шарика на стеклянную пластинку, предварительно протертую машинным маслом. Затем пластинки встряхивают до расплыва шариков в лепешки диаметром 7—8 см и толщиной в середине около 1 см. Приготовленные таким образом лепешки хранят в течение 24±2 ч в ванне с гидравлическим затвором при относительной влажности воздуха 100%. Затем их помещают .в бачок с водой и кипятят в течение 4 ч. После этого лепешки в бачке охлаждают, извлекают ,из воды и осматривают. Оставшиеся две лепешки хранят в течение 28 суток.

Цемент считают доброкачественным в отношении равномерности изменения объема, если на лицевой стороне лепешки нет радиальных, доходящих до краев трещин или сетки трещин, а также каких-либо искривлений и увеличения объема лепешки. Трещины усыхания (в середине лепешки) допускаются.

Испытание в автоклаве. Две лепешки, выдержавшие испытание кипячением, помещают на решетку автоклава, предварительно на Г2—115% объема наполненного водой, но не доходящей до решетки; затем крышку автокл,ава закрывают, закручивая поочередно противоположные гайки, и включают электронагревательные приборы. Давление в автоклаве поднимают до 20±0,5 ат в течение 3/4—2 ч и поддерживают на этом уровне в течение .3 ч. Затем нагревательные приборы выключают и с помощью клапана давление за 1 ч доводят до наружного. После остывания автоклава открывают его крышку и осматривают лепешки.

Тонкость помола портландцемента

Тонкость помола портландцемента может быть оценена двумя показателями:

количеством цемента в % от веса навески, проходящего через сито с определенным размером отверстии (метод ситового анализа);

удельной поверхностью зерен —числом квадратных сантиметров поверхности зерен в 1 г цемента (метод воздухопроницаемости).

Эти два ‘показателя связаны между собой: чем тоньше измельчен цемент, тем больше его пройдет через данное сито при рассеве и тем соответственно больше будет величина удельной поверхности.

Ситовый анализ. Для определения тонкости помола цемента методом ситового анализа отвешивают 50 г цемента, предварительно высушенного в сушильном шкафу в течение 1 ч при температуре 105—110° С, высыпают его на сито и закрывают крышкой. Сито применяют с сеткой № 008 по ГОСТ 3584-53 (размер ячейки в свету 0,08 мм).

Сетка должна быть хорошо натянута и плотно зажата в цилиндрической Обойме диаметром 10—>15 см. На ней не должно быть остатков цемента.

Цемент просеивают с помощью механического прибора либо вручную. Просеивание считается законченным, когда в течение 1 мин сквозь сито при ручном просеивании проходит не более 0,05 г цемента.

Метод воздухопроницаемости. Этот метод основан на сопротивлении столбика из цементного порошка прохождению через него ‘воздуха. Сопротивление оказывает поверхность цементных зерен, так как между поверхностью и движущейся струей воздуха возникают силы трения. Таким образом, чем больше поверхность цементных зерен, т. е. выше тонкость помола, тем выше суммарная величина силы трения и меньшую воздухопроницаемость покажет столбик цементного порошка. Для цементов отечественных заводов она равна 2500—3000 см2/г.

В качестве прибора для определения удельной поверхности цемента применяют пневматический поверхностномер. Методика определения сдельной поверхности цемента приведена в ГОСТ 310—60.

Гидратация портландцемента

Твердение портландцемента, т. е. его последовательное превращение после смешивания с водой (затворения) в начале в пластичное тесто, затем потеря тестом пластичности (схватывание) и его последующее твердение (формирование искусственного камня) является сложным и многостадийным физико-химическим процессом, основанным на химическом взаимодействии фазовых составляющих цемента и воды (гидратации цемента). В ходе гидратации цемента безводные клинкерные минералы — силикаты, алюминаты и алюмоферриты кальция превращаются в соответствующие кристаллогидраты — гидросиликаты, гидроалюминаты, гидроферриты кальция, гидроксид кальция. Например, гидратация основной фазы портландцемента — алита, являющегося носителем основных свойств и определённым «символом» портландцемента, происходит по следующей условной схеме реакции гидролитического разложения:

2Ca3SiO5 + 6Н2О -> Ca3Si2O*3H2O + ЗСа(ОН)2.

При обычных условиях твердения -70% C3S гидратируется за 28 сут., а полная гидратация этой фазовой составляющей цемента может наступить за 1 год и более. По аналогичной схеме гидратируется второй силикат портландцемента — белит (СЭ5), однако, его гидратация протекает медленнее (степень гидратации за 28 сут. -30%), и в результате гидролиза образуется меньшее количество гидроксида кальция (СН). Продуктами реакций гидратации являются слабозакристаллизованные (почти аморфные) гидросиликаты кальция, обладающие свойствами геля, и гидроксид кальция (СН). Гидросиликаты кальция (аморфные или слабозакристаллизованные), образующиеся при гидратации C2S и C3S, фактически не соответствуют какому-либо определённому соединению, а имеют обширную область составов, обозначаемую общим понятием — гель С-S-H. Поскольку портландцемент полиминерален и, кроме силикатов кальция, содержит алюминатные, ферритные и сульфатные фазы, реальные продукты гидратации цемента ещё более сложны, они представляют собой тонкую смесь C-S-H геля с продуктами гидратации и взаимодействия алюминатных, ферритных и сульфатных фаз (фазы AFm и AFt). Иногда продукты гидратации цемента обобщают и называют цементным гелем, хотя фактически, кроме действительно слабозакристаллизованных (гелевидных) гидросиликатных и гидроалюминатных фаз, они включают достаточно крупные кристаллы портландита Са(ОН)2.

Ускорители схватывания цемента

В зависимости от конкретных условий строительства и ремонта застройщику необходимо ускорить начало и период времени схватывания. Например, близится холодное время года и стоит задача максимально ускорить все виды строительных работ, Ускорить схватывание цемента можно с помощью внесения в бетонную смесь специальных присадок.

Популярные присадки для ускорения схватывания цемента:

  • Ускоритель твердения для бетона «УП2М», Россия, средняя цена 43 руб/кг.
  • Ускоритель твердения для бетона «Форт Ускорин», Россия, средняя цена 24 руб/кг.
  • Супер пластификатор ускоритель твердения «Реламикс Т-2», Россия, средняя цена 98 руб/кг.

Указанные и другие присадки для ускорения схватываемости цемента вносятся в момент затворения и начала перемешивания бетонного раствора. В общем случае при стандартных условиях (температура окружающей среды 20 градусов Цельсия, относительная влажность воздуха 75-80%) с помощью указанных видов присадок можно укорить период схватывания и набора марочной прочности в три раза без потери прочности и долговечности конструкции.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *